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• Pruning LLMs by minimizing reconstruction errors should be done carefully because
otherwise it could easily overfit the calibration data.

• Leveraging the generative nature of LLMs to create its own calibration data can
mitigate this issue and improve generalization of pruned LLMs.

Background
• Pruning has the potential to reduce the computational requirements of LLMs,

yet the standard approaches are not feasible as they require an extensive training
process as well as training data.

• Consequently, pruning LLMs is done post training, by finding a sparse mask (and
updating remaining weights) such that it can reconstruct the original dense pre-
trained model, as follows:

min
w,m

∥f (w̄; D) − f (m ⊙ w; D)∥2
2

s.t. ∥m∥0 ≤ k ,
(1)

i.e., given a pre-trained model w̄, the goal is to find a pruning mask m such that
the resulting sparse model m ⊙ w reconstructs the predictions of the original
dense model f (w̄; ·) on some caliration data D.

• However, this reconstruction error minimization process (1) still requires a lot
of memory, and thus, existing works take a “divide-and-conquer” approach: i.e.,
split model into smaller submodels, prune each submodel individually, and simply
put all resulting sparse submodels together.

Reconstruction techniques
• We first show that the “divide-and-conquer” approaches create critically high

compounding errors, and subsequently, that various engineering techniques can
reduce this error quite significantly as seen in the following plots:
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• Specifically, we apply the following three techniques:
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(i) block-wise reconstruction (br) to extend the unit of optimization target from
a layer to a block of layers; (ii) global propagation (gp) to use “global propaga-
tion” from the original dense model as input for the target reconstruction; (iii)
cross-block reconstruction (cr) to stitch between blocks.

• More results of reconstruction techniques on LLaMA-7B:
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(a) SparseGPT
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(b) Wanda
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(c) Magnitude

Overfitting calibration data
• While one can reduce the reconstruction error, it turns out that this does not

necessarily mean a “better” pruning result.
• More specifically, we find that reducing the reconstruction error often leads to

overfitting the calibration data:
Reconstruction Error (normalized) Perplexity Zero-shot accuracy

lr 3.56 9.77 54.24
br 1.33 9.02 55.14

br+gp 0.51 8.83 56.22
br+gp+cr 0.38 9.18 54.65

cr Error (normalized)
Calibration Test

X 0.51 2.23
O 0.38 2.48

where it is seen that a method with a lower reconstruction error does not neces-
sarily yield a lower perplexity or higher zero-shot accuracy.

• We note that this phenomenon seems to be more pronounced in larger models.

Leveraging self-generated calibration data to
improve generalization
• We have seen that reconstruction techniques are useful but they can lead to

undesirable overfitting.
• This can be explained by our intuition that the calibration data is highly limited

in two aspects: it is too little (compared to optimization variables), and may not
represent the training data (as it is arbitrarily given).

• Crucially, noticing that what we are dealing with is a generative model, we suggest
creating calibration data on our own, that is potentially much bigger in size and
closer to the data that the original model is trained on.

• Here, we create the calibration data similarly to Liu et al. (2023), and the results
are as follows:
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(a) Test error
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where we can see that leveraging the self-generated calibration data reduces both
test error and perplexity, mitigating overfitting quite effectively.

Conclusion
• Minimizing reconstruction errors can have both benefits and pitfalls, suggesting

fundamentally rethinking the current practice of pruning LLMs.
• Leveraging self-generated calibration data can potentially mitigate this issue.


